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Bruno D. Zumbo, André A. Rupp

4.1. Introduction

If the statistical, conceptual, and practical activities of measurement were a crop
seeded by Spearman, Yule, Pearson, and others working the early fields of social
and behavioral research, we could proudly say that those seedlings have resulted in a
bountiful harvest. The annual yield of measurement research continues to grow, and
the number of new journals and books devoted to and surveying the field and reporting
advances has increased over the past decade. The goal of indexing data quality has a
longstanding tradition in statistical modeling, and its ubiquity in psychometric modeling
thus comes as no surprise, which is why research in reliability and validity theory
continues to be of relevance today, as a quick glance at the reference list of this chapter
reveals. Before we begin to describe the process of harvesting the statistical crops that
have been sown, however, let us first take a look at the analyst's task in measurement
itself.

Analysts of test data are typically faced solely with an array of numbers, which often
consists of 0s and 1s when all items on a test are scored dichotomously. It is the
objective of the analyst to use this array for a variety of meaningful inferences about
the examinees and the measurement instrument itself, which should be appreciated
as a daunting task. Statistical modeling has always been concerned with decomposing
observational values into a component that is deterministic and a component that is
stochastic so that relationships between manifest and unobserved variables can be
explicitly stated and uncertainty about model parameters can be estimated and used
to qualify the inferences that are possible under a given model. Psychometric models
are, of course, descendants of this tradition (see Goldstein & Wood, 1989; McDonald,
1982; Mellenbergh, 1994; Rupp, 2002) but are unique because they are located at
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the intersection of examinee and item spaces, both of which are typically of interest
to measurement specialists. For example, classical test theory (CTT) (e.g., Lord &
Novick, 1968) generically decomposes the observed score into a deterministic part (i.e.,
true score) and a stochastic part (i.e., error), generalizability theory (g-theory) (e.g.,
Brennan, 2001; Cronbach, Gleser, Nanda, & Rajaratnam, 1972; Shavelson & Webb,
1991) further unpacks the stochastic part and redefines part of error as systematic
components, and item response theory (IRT) (e.g., Lord, 1980; van der Linden &
Hambleton, 1997) reformulates the two model components by inducing latent variables
into the data structure. Structural equation models (SEM) (e.g., Muthén, 2002) and
exploratory as well as confirmatory factor analysis models (EFA and CFA, respectively)
(e.g., McDonald, 1999) decompose the covariance matrix of multivariate data into
deterministic (i.e., reproduced covariance matrix) and stochastic (i.e., residual matrix)
components, which is a model that can be equivalently written as a formulization
involving latent variables.

Even though latent trait indicator values and observed composite scores are typically
highly correlated, the injection of a latent continuum into the data matrix has given us
the property of item and examinee parameter invariance for perfect model fit across
populations and conditions, has allowed us to define conditional standard errors of
measurement similar to g-theory (Brennan, 1998b), and has opened up the road for
adaptive testing through the use of item and test information functions (e.g., Segall,
1996; van der Linden & Hambleton, 1997). Still, these advances have not come
without a price. Improvements in the level of modeling and in quantifying measurement
error have come at the expense of large sample sizes that are typically required for
parameter estimation in both frequentist and Bayesian frameworks (see Rupp, Dey,
& Zumbo, in press). For example, categorical data, particularly dichotomous data,
require the use of estimation methods such as weighted least squares, which make, for
example, reliability estimates based on small sample sizes suspect (Raykov, 1997a).

The focus in this chapter is on reliability and validity, two topics that have generated
many papers and books, even if one were to focus on the past 25 years only. As it is
nearly impossible to review all of the developments in a single book chapter, we aim
to provide a broad overview of recent developments in reliability and validity theory
and periodically provide more detail to demonstrate the vast array of measurement
methodologies and approaches currently available to aid us in illuminating our
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understanding of social and behavioral phenomena. We will view these developments
through a statistical modeling lens to highlight the consequences of choosing—perhaps
even abusing—a particular modeling framework for inferential decisions.

We assume a basic exposure to measurement and test theory, but we will define
basic key terms. For an accessible overview and advances in the statistical basis of
reliability theory, the interested reader can consult Feldt and Brennan (1989), Knapp
(2001), and Traub (1994), and for validity theory and practice, the reader can consult
Messick (1995) and the papers in Zumbo (1998). Because our chapter presumes a
working knowledge of modeling frameworks used in practical measurement problems,
the reader might refer to Hambleton, Swaminathan, and Rogers (1991) or Lord (1980)
as useful references for IRT, Kaplan (2000) or Byrne (1998) as useful references for
structural equation modeling, and Comrey (1973), Everitt (1984), or McDonald (1999)
as useful references for factor analysis (FA) methods.

Our discussion begins with an overview of frequently used key terms in the
measurement literature to aid the understanding of our subsequent discussions,
clarify some common misconceptions, and allow for more precise statements. We
then present some important and practically relevant findings from the literature on
reliability theory in roughly the past decade, with a strong focus on developments for
reliability coefficients, standard errors of measurement, and other local quantifiers
of measurement error. Finally, a section on validity theory illustrates how models for
cognitively diagnostic assessment have forced measurement specialists to rethink
their approaches to defining and measuring what constitutes valid inferences from test
scores. But first, let us lay some groundwork with a brief discussion of terminology
relevant for modeling data from measures.

4.2. Commonly Used and Misunderstood
Terms in Measurement

Although the definitions presented in this section are fundamental, it is remarkable how
often they are used inconsistently in the measurement literature. This is probably partly
an artifact of inconsistent historical usage but can also be traced back to a discrepancy
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that typically exists between the everyday usage of these terms and their precise
meaning in a mathematical modeling context.

First, there is the word reliability itself. In nonacademic contexts, reliable is commonly
understood to mean “a consistent dependability of judgment, character, performance, or
result” (see Braham, 1996, p. 1628). For applied measurement specialists, reliability is a
desired property of tests, which should be dependable measurement instruments of the
constructs that they are supposed to measure or dependable measurement instruments
for performance evaluation (Klieme & Baumert, 2001). Even though these notions
are intuitively appealing, they are relatively imprecise and need to be translated into
properties that can be mathematically tested and estimated through sample quantities.
Consequently, reliability in a non-mathematical sense is often understood to be so much
more than reliability in a strictly mathematical sense because, under the latter lens,
reliability is basically translated into the estimation of a coefficient based on variance
components in a statistical model. Such a reliability coefficient assesses consistent
scores but, per se, says little about the assessment instrument itself, related inferences,
and social consequences because those aspects are embedded in the larger value-
laden ethical and social context of test use (Messick, 1995).

As Zimmerman and Zumbo (2001) note, formally, test data are the realization of
a stochastic event defined on a product space # = #I x #J, where the orthogonal
components, #I and #J, are the probability spaces for items and examinees,
respectively. The joint product space can be expanded to include other spaces as well,
such as spaces induced by raters or occasions, a concept that was formalized in g-
theory from an observed-score perspective and the facets approach to measurement
from an IRT perspective. Hence, modeling of test data minimally requires sampling
assumptions about items and examinees, as well as the specification of a stochastic
process that is supposed to have generated the data (for readers interested in a
measure-theoretic Hilbert-space approach to the analysis of test data, see Zimmerman
& Zumbo, 2001). Therefore, two distinct directions of generalizability are typically of
interest, which require an understanding of the reliability and validity properties of
scores and inferences. First, it is of interest to make statements about the functioning of
a particular assessment instrument for groups of examinees who share characteristics
with those examinees who have already been scored with it. Second, it is of interest
to make statements about the functioning of item sets that share characteristics with
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those items that are already included on a particular test form. For example, it is often of
interest to show that the scores and resulting inferences for different examinee groups
are comparably reliable and valid if the same instrument is administered to the different
groups, a parallel version of the instrument is administered to the different groups, or
selected subsets of items are administered to the different groups. This also specifically
implies that researchers should report estimates of reliability coefficients and other
parameters for their own data, rather than relying on published reports from other
data, and that comparable validity needs to be continually assessed rather than being
taken for granted based on a single assessment calibration. Let us take a look at some
commonly used terms to describe the process of modeling assessment data.

It is useful to first distinguish between test-level models (e.g., CTT, g-theory models),
in which modeling takes place at the observed total-score level, and item-level models
(e.g., IRT for binary or rating scale item data and factor analysis models for continuous
item data), in which modeling takes place at the item-score level along with the total-
score level. For the latter models, the primary modeling unit is the item, which can be
a written, aural, or graphical stimulus that entices examinees to produce behavioral
responses. Yet the seemingly unambiguous notion of an item is rather fluid and
context dependent. For example, items can be collected, either naturally through their
placement alongside reference information on an assessment or statistically through
definition, into item bundles or testlets, which can then be treated as a single item in
subsequent mathematical analyses (note that potential response dependencies can
be modeled explicitly as well; see Bradlow, Wainer, & Wang, 1999; Wang, Bradlow,
& Wainer, 2002). Moreover, in other testing contexts with complex work products the
definition of a single item can become extremely challenging if not impossible, and it
might be preferable and necessary in the future to think of measurement opportunities
more generally instead. For a recent description of the variety of items currently being
used in measurement practice, see Zenisky and Sireci (2002).

Items can be assembled for different purposes such as personality trait assessment or
knowledge assessment, and it is the latter scenario that typically leads to instruments
that are commonly called tests. In addition, the term scale is also often used in the
social science literature on personality assessment interchangeably with the term
questionnaire. The terms test, scale, and measure are used interchangeably in this
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chapter, but it is acknowledged that tests are, in common language, used to imply some
educational achievement or knowledge test with correct or incorrect responses.

A subject's response to an item then becomes a behavioral observation in an abstract
conceptual sense that needs to be quantified with a score, which, in turn, becomes
a statistical observation. Some typical forms of scores are the (weighted) linear
composite or total score that arises from individual items being scored dichotomously
or polytomously. Measurement specialists then resort to specific modeling frameworks
to account for the fact that behavioral observations are imperfect representations of
the latent variable whose relative absence or presence the assessment instrument is
supposed to quantify and, as such, contain measurement error. Indeed, the choice
of measurement model has fundamental implications for how measurement error
is viewed, and these differences lead modelers to choose particular model-specific
statistics to quantify this error. Error, then, albeit a universally present phenomenon
of observed behavioral responses, is conceived and quantified differently in alternate
micro-universes created by different modeling frameworks. Interestingly, the well-known
psychometric statement X = T + E is axiomatic for all models in such frameworks.

In any modeling framework, the observable or manifest scores created by the
interaction of examinees with items on a measure are considered to be indicators or
markers of unobservable or latent variables. In this chapter, we will use the term latent
variable to refer to a random variable that is deliberately constructed or derived from
the responses to a set of items and that constitutes the building block of a statistical
model (e.g., # scores in IRT or factor scores in FA). In other words, the scores are
indicators of the latent variable, which is itself supposed to be an indicator of an
underlying latent trait that is inherent in the examinees and supposedly tapped into
by the items. However, these quantities and objects are not identical: The latent
variable is a psychometric construction, whereas the latent trait is a psychological
phenomenon. Put in a nutshell, a construct is defined with reference to a nomological
network of other phenomena, empirical findings, and theories linking latent variables
to abstract constructs (Embretson, 1983; Messick, 1995), whereas a latent variable
is a mathematical construction. This often leads to confusion for applied specialists
when psychometric dimensionalities of tests do not coincide with believed psychological
dimensionalities, although this apparent discrepancy is perfectly expected if the precise
distinction above is made.
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Let us illustrate this distinction with an example. The Center for Epidemiological
Studies-Depression (CES-D) is a 20-item scale introduced originally by Lenore S.
Radloff to measure depressive symptoms in the general population. If we were
studying the measurement properties of the CES-D via CFA models or IRT, the items
would be considered indicators of a latent variable (which most researchers would
call “depression”), but the latent variable is not depression itself as it is merely a
mathematical construction. The latent variable is related to the construct of depression,
however, which is defined as per the complex interrelations of ideas, definitions,
and empirical findings in the clinical literature. Likewise, if one were empirically
scoring the CES-D by summing the item responses, the resultant composite scale
score is not depression itself either but again only related to that construct as an
observable indicator of it. Even more precisely, the score is an indicator of the severity
of depressive symptoms.

It should be noted, however, that the measurement literature is generally somewhat
vague and inconsistent in its use of the term latent variable. The term has a number
of different meanings in the measurement and statistics literature, each of which can
lead to quite different variables. There are at least three common uses of relevance
to this chapter. The first definition, which is the closest description of a (unobserved)
latent variable in classical test theory, is that latent variables are real variables that
could, in principle, be measured (e.g., proficiency or knowledge in a domain, such
as mathematics, or level of depressive symptomatology). A second form of a latent
variable is when observed scores arise by recording whether an underlying variable
had values above or below fixed thresholds (e.g., a response to a Likert-type question).
The former definition can be conceptualized within a framework of the latter definition,
although it does not necessarily have to be so. The third definition, which is the most
commonly used meaning in the social sciences, describes a latent variable as a
constructed variable that comes prior to the items (or indicators) of which we measure.
With item responses at hand and the use of a statistical model, one can predict a
score on this latent variable for each person in the sample. This third meaning is most
commonly used in factor analysis, latent variable modeling, and covariance structure
models and is therefore the one used in this chapter. In terms of the psychometric
approach to factor analysis, a latent variable is a reason for or summary of behavioral
or cognitive manifestations. In the statistical framework, a latent variable is defined by
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local or conditional independence (statistical entity with no real theoretical purpose).
Statistically, it is assumed that if two variables are correlated, they have something
unobserved in common (i.e., the latent variable). Therefore, uncorrelated errors (i.e.,
the residual correlation among the items over and above the factors) are a key defining
feature of latent variable models.

Finally, it is useful to differentiate between observed-score and latent variable models.
When an observed composite score is decomposed into two independent additive
components, true score and error, without any further assumptions about the structure
of the true score, researchers have termed this CTT. At the same time, different sets
of assumptions about the error structure and true scores for repeated assessments
and different sampling schemes for items and examinees have led to the definition
of parallel, essentially parallel, #-equivalent, essentially #-equivalent, and congeneric
test scores. Moreover, if no particular statistical model is assumed for the responses,
models in CTT are typically referred to as weak true-score models, and if a statistical
model is assumed (e.g., binomial, compound binomial), they are referred to as strong
true-score models. If the relationship of the observed score to the true-score and error
components is of a specific functional form that depends on at least one latent variable
and can be formulated in a generalized linear (latent variable) model framework,
we typically speak of latent variable models. Latent variables belong to the class of
unobservable random variables, but they are a specific subset because their existence
is postulated, and their metric is established through the specification of the model
and the parameter estimation strategy. If response data are modeled at the item
level, measurement specialists refer to these models as IRT models, which have
become increasingly popular in the past two decades due to increasing computer
power and their flexible mathematical formulation. It is interesting to note that there
is no substantive theory in IRT but that, generally, the model is the theory, which,
some argue, makes the rational link between the latent variable and the underlying
construct it potentially indexes harder to establish as one can alternatively conceive
of a latent variable as a mere data-processing filter that allows for ordered inferences
about examinees and items (see Junker, 1999). In general, observed and latent variable
frameworks benefit from one another and are compatible as, for example, methods
of covariance structure analysis that are well suited to test assumptions about error
structures associated with CTT.
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At this point, it is important to take a small sidebar to highlight an essential difference
between factor analysis (as it is commonly used) and IRT in item calibration. Although
FA and IRT can be written as generalized linear latent variable models, the statistical
estimation problem is compounded in IRT because the item responses are binary
or ordered polytomous random variables, and the estimation strategy necessitates
the estimation of the latent variable score for each individual in order to estimate the
parameters of the item response function (i.e., calibrate the items). This is in stark
contrast to most factor analysis models, wherein the latent variable is integrated out
of the estimation equation by, in essence, marginalizing over the latent variable (i.e.,
focusing on reproducing the observed covariance matrix).

Once items have been calibrated, examinees have been scored, and quantifiers of
measurement error have been computed, inferences are being made grounded in the
mathematical model that was used. Ideally, those inferences ought to be accurate
and result in fair conferences for the examinees and the assessment discipline.
Investigations of the degree to which scores are consistent across administration
conditions fall under the umbrella term of reliability theory, whereas investigations
of the degree to which inferences made from test scores and the consequences of
decisions based thereon are appropriate fall under the umbrella term of validity theory.
Specifically, reliability is a question of data quality, whereas validity is a question of
inferential quality. Of course, reliability and validity theory are interconnected research
arenas, and quantities derived in the former bound or limit the inferences in the latter.
This is seen explicitly in CTT statistics, for example, where it can be easily shown that a
validity correlation coefficient is never greater than the square root of the test reliability
coefficient. Moreover, to increase both reliability of scores and validity of inferences,
a surge in models for cognitively diagnostic assessment has forced measurement
specialists to refocus their attention on the cognitive processes that examinees are
engaged in when responding to items. This has led to a renewed dissection of what
forms of evidence support valid inferences and has brought the focus of investigations
back to the examinees.

The title of this chapter was chosen to highlight that, when dealing with matters of
reliability and validity, we are, in essence, dealing with matters of making inferences
from test or scale scores. In other words, data on reliability and validity gathered in
the process of measurement aid social and behavioral researchers in judging the
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appropriateness and limitations of their inferences from the test or scale scores. In the
next section, we provide an overview of reliability theory and the statistical properties
of test and scale scores. In the section that follows, we provide an overview of validity
theory and then end the chapter with some pointers to future developments.

4.3. A Unified Look at Reliability and
Error of Measurement as a Basis for Valid
Inferences

Quantifying measurement error can take different forms, depending on the scoring
framework that is used for modeling the data. Traditionally, CTT has been used
predominantly by test developers as well as applied specialists. In CTT, reliability is
quantified using reliability coefficients, and uncertainty in scores is quantified using
unconditional and conditional standard error of measurement. In recent years, the
ever-growing literature on latent variable models, particularly IRT models, might
seem to suggest to some that CTT models are passe. This would be an inappropriate
perception of testing reality, however, fueled more by academic research practice
than by testing practice across a wide range of situations, and we will thus briefly
address this controversy. For example, Brennan (1998a) writes, “Classical test theory
is alive and well, and it will continue to survive, I think, for both conceptual and practical
reasons” (p. 6).

Nevertheless, the growing interest in IRT by theoreticians and practitioners alike
over the past 30 years has been nothing short of spectacular. This is evidenced
in the number of sessions at measurement and testing conferences and the large
proportion of publications in measurement and testing journals devoted to theoretical
developments or applications of IRT. Although it is true that IRT is frequently being
used in moderate- to large-scale testing programs and projects, CTT statistics continue
to be widely used in the development and evaluation of tests and measures in many
areas of the educational, social, and behavioral sciences that are concerned with
tests and measures of limited volume of production and distribution. For example, an
overwhelming majority of tests and measures reviewed in source books such as the
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Mental Measurements Yearbook series, produced by the Buros Institute of Mental
Measurements, or the Measures of Personality and Social Psychological Attitudes book
by Robinson, Shaver, and Wrightsman (1991) predominantly report CTT statistics.
The primary reason for using CTT in small-volume testing programs and in research
environments is the large sample sizes that are needed when one seeks to apply latent
variable modeling approaches such as IRT and SEM (e.g., Bedeian, Day, & Kelloway,
1997; Bentler & Dudgeon, 1996; Junker, 1999). With observed-score measures being
alive and well, it is thus worthwhile to investigate the recent developments that have
taken place on these measures in the past decade. We will start appropriately with one
of the oldest and most versatile indicators of score consistency, the reliability coefficient.

4.3.1. Recent Developments in the Theory
of Reliability Coefficients

In the past 10 years, particularly due to the impact of increasing computer power,
psychometric modeling has seen an explosion of sophisticated models that require the
computer-intensive simultaneous estimation of numerous model parameters that has
fueled a rethinking of the role of reliability coefficients. It is worth stating, though, that
the dominating role of entities such as the information function in IRT has not changed
modelers' desire for conceptual reliability. It has, however, changed the ways in which
we look at the mathematical formalization of reliability.

As stated before, reliability is typically measured by a reliability coefficient, often
denoted #XX', which in CTT or observed-score models is defined as the ratio of true-
score variance to observed-score variance or the proportion of variation in the data
that can be explained by differences among individuals or objects of measurement.
Because the observed score is decomposed into two additive unobserved components,
leading to ambiguities about the relative contribution of each unobserved component
to total observed variance, the reliability coefficient cannot be computed directly.
Instead, estimators have to be defined that provide reliability coefficient estimates
based on test data from one or multiple measurement occasions. However, it is
noteworthy that the definition of a reliability coefficient itself, in the context of multiple
measurement occasions, poses subtle challenges to measurement specialists, who
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have been haunted for more than 40 years by complications that arise from difference
scores. Some have called for a ban in difference scores because of their supposed low
reliability, but today this ban has been lifted. It is recognized that although the frequently
cited limitations of difference scores are real, these limitations mostly hold for restrictive
situations and that there are many scenarios for which difference scores are most
appropriate (Zumbo, 1999b).

A reliability coefficient is a particularly natural index in observed-score models, and
the definition of a reliability coefficient in latent variable models such as IRT or SEM is
much more artificial. For both latent variable models and observed-score models, the
formulization of conditional measurement error and information is a natural pathway that
connects different models. Yet the reliability coefficient is intricately related to the error
of measurement. For example, variance ratios in random-effects models prevalent in g-
theory or the asymptotic variance of the ability trait distribution in IRT models depend
directly on quantities that measure the error in the associated models. Nevertheless,
the reliability coefficient itself is sometimes preferred as an index of the amount of
measurement uncertainty inherent in test scores because it is unitless and is a single
informative number that is practically easy to compute and included in most standard
software packages (see Feldt & Brennan, 1989). Moreover, it is easily interpreted. Let
us now turn to a few commonly encountered estimators of the population reliability
coefficient.

4.3.2. Estimators of the Reliability
Coefficient and Their Properties

A fundamental fact concerning unreliability is that, in general, it cannot
be estimated from only a single trial. Two or more trials are needed to
prove the existence of variation in the score of a person on an item, and
to estimate the extent of such variation if there is any. The experimental
difficulties in obtaining independent trials have led to many attempts
to estimate the reliability of a test from only a single trial by bringing
in various hypotheses. Such hypotheses usually do not afford a real
solution, since ordinarily they cannot be verified without the aid of at
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least two independent trials, which is precisely what they are intended
to avoid. (Guttman, 1945, p. 256)

It is typically argued that reliability estimators fall into three distinct classes: (a) internal
consistency coefficients, (b) alternative-forms reliability coefficients, and (c) test-
retest coefficients. However, because reliability coefficients that involve multiple
occasions for testing or rating can be estimated using intra-class coefficients, it seems
more appropriate to distinguish only internal consistency coefficients and intra-class
coefficients. Moreover, the intra-class coefficient in CTT is essentially a Spearman-
Brown extrapolation of Cronbach's # (Feldt, 1990), which is itself the average of all split-
half internal consistency correlation coefficients under appropriate model assumptions
(Cronbach, 1951) and is, as such, preferred over a split-half coefficient computed for
some arbitrary random split. Cronbach's # can be computed from data on a single
administration of a test and does not require parallel forms, a test-retest scenario, or
multiple judges for which an intra-class correlation coefficient can be used. For tests
or items that are at least essentially # equivalent with uncorrelated errors, # equals
the correlation coefficient, and for congeneric tests, it is a lower bound (Lord & Novick,
1968; see Komaroff, 1997).

Coefficient # is among the most commonly reported statistics in all of social and
behavioral sciences. What makes it so useful to researchers and test developers? First,
it provides a conservative lower bound estimate of the theoretical reliability in the worst
of situations (i.e., when essential # equivalence does not hold). That is, the proportion
of observed-score variance that is due to true individuals' differences is in truth at
least the magnitude of coefficient #. Second, it provides this estimate without having
to resort to repeated testing occasions and without necessitating parallel forms of a
test. Third, it is easily computed and available on most statistical computer programs.
The biggest limitation of coefficient # is that it results in an undifferentiated error of
measurement. Generalizability theory, on the other hand, acknowledges that there are
several sources for measurement error, which depend on the various factors modeled in
the measurement experiment, and that one may want to model these various sources.
Of course, it should be noted that in differentiating the error of measurement, one is
actually also redefining the consistent or true-score part of the data.
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It seems that Guttman's fears were not warranted and that we have overcome the
problem of estimating reliability, a property of scores from repeated administrations,
from scores from a single administration. Unfortunately, the situation may not be that
simple if assumptions underlying the scoring model used are violated. In considering the
assumptions of measurement models (and particularly uncorrelated errors), Rozeboom
(1966) reminds us in his classic text on test theory that statistical assumptions are
empirical commitments:

However pleasant it may be to shuffle through the internal statistics of a
compound test in search of a formula which gives the closest estimate
of a test's reliability under conditions of uncorrelated errors, this is for
practical applications like putting on a clean shirt to rassle a hog. (p.
415)

More than 35 years ago, Maxwell (1968) showed analytically that correlated errors lead
to biased estimates of the correlation coefficient if an intra-class correlation coefficient
is used as an estimator and argued that this bias is most likely to be an overestimate.
It has been confirmed via simulation studies that Cronbach's # underestimates #XX'
under violation of essential # equivalence and that it overestimates #XX' if errors
are correlated (Zimmerman, Zumbo, & LaLonde, 1993; see Raykov, 1998b, for
composite tests and Zumbo, 1999a, for a simulation framework), but these effects
can be partly attenuated if both assumptions are violated simultaneously (Komaroff,
1997). Nevertheless, it appears that # is relatively robust against moderate violations
of these assumptions (see Bacon, Sauer, & Young, 1995; Feldt, 2002). Similar results
have been found for g-theory designs with multiple time points. In such designs,
underestimation was present for uncorrelated errors with increasing variances over
time, overestimation was present for correlated errors with equal variances over time,
and both directions of estimation bias were present for correlated errors with unequal
variances over time (Bost, 1995). It is important to note that correlated errors may
arise for a variety of reasons. Given the advent of new item formats, one of the most
common reasons for correlated errors is linked items. That is, historically, measurement
specialists have advocated that items be disjoint statements that would not result in
extra covariation in latent variable modeling due to item format. Items that are linked,
however, may induce extra covariation among the items that appear as correlated
errors (for an example, see Higgins, Zumbo, & Hay, 1999). We recommend that
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researchers faced with correlated errors arising from item format see Gessaroli and
Folske (2002) for a useful, yet general, approach for estimating reliability.

In latent variable modeling, correlated errors are equivalent to introducing an additional
latent variable (i.e., factor) that loads on the manifest variables (e.g., MacCallum,
Wegener, Uchino, & Fabrigar, 1993; Raykov, 1998a). Today, FA methods, particularly
CFA, continue to be useful tools to assess the degree of correlated errors (e.g.,
Reuterberg & Gustafsson, 1992) and have recently been used to construct adjusted #s
that reduce and sometimes eliminate the inflation effect (Komaroff, 1997). Moreover,
SEM allows for the estimation of a reliability coefficient for congeneric tests that is
not a lower bound for the true reliability coefficient (unlike Cronbach's #) (Raykov,
1997a), along with a bootstrap estimation of its standard error that does not depend
on normality assumptions (Raykov, 1998b). Unfortunately, large sample sizes are
required for the stable estimation of model parameters, and not all estimation methods
are recommendable (see Coenders, Saris, Batista-Foguet, & Andreenkova, 1999).
Researchers need to be aware of the additional assumptions that are required for
proper estimation in a covariance structure analysis (Bentler & Dudgeon, 1996). Among
these are multivariate normality of the response data required for some estimation
approaches, which is unlikely to hold for categorical data, and large sample sizes
required for asymptotic theory, which are unlikely to exist for small-scale assessments.

Estimating reliability coefficients and assessing model assumptions has also been done
for more than three decades using FA methods (e.g., Feldt, 2002; Fleishman & Benson,
1987; Jöreskog, 1970, 1971; Kaiser & Caffrey, 1965). It has been shown repeatedly that
the assumption of uncorrelated errors, coupled with unidimensionality and the use of
the simple total score in observed-score modeling, corresponds to an orthogonal factor
model with a single dominant factor that has loadings for each item in the test. Under
this model, the reliability coefficient is estimated as the sum of squared loadings (i.e.,
the communalities) divided by the sum of squared loadings plus error loadings (i.e.,
communalities plus unique variances).

Along with FA models, SEMs allow for flexible testing of multiple assumptions such as
type of model (i.e., parallel, # equivalent, congeneric), correlation of errors, invariance
across time, and invariance across subgroups (e.g., Feldt, 2002; Fleishman & Benson,
1987; Raykov, 1997a, 1997b, 1998a, 1998b, 2000, 2001). In an SEM framework,
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the reliability coefficient can be estimated as an internal parameter or an external
parameter of the model, and test or item weights can either be preset by the investigator
or estimated as factor loadings simultaneously with all other model parameters. The
general approach for testing assumptions about error structures using SEM requires at
least four items or tests due to the identification requirements of the model so that all
hypothesis tests, including the one about congenerity, can be performed (e.g., Raykov,
1997a). In addition to coefficient #, the omega coefficient with equal and unequal
weights has been proposed; unequal weights are preferred by some authors because
the coefficient never increases when items are dropped. Note, however, that reliability
estimates are not necessarily recommended as sole yardsticks for test construction
(Bacon et al., 1995). More recently, SEM has been advocated by some to model the
type of correlation structure via integrated time-series models, but the practical utility
of that approach remains limited at this point (Green & Hershberger, 2000). Finally,
note that, just as attenuated correlation coefficients have been shown to be sensitive to
the true-score distributions for examinees (Zimmerman & Williams, 1997), coefficient
# is sensitive to the score distribution of examinees, which has led to the proposal of a
robust generalization of # that is insensitive to tail fluctuations in this distribution (Wilcox,
1992).

So what is a practitioner to do when coefficient # needs to be estimated? It appears
that for small sample sizes, sophisticated latent trait models would provide unreliable
results, and the effort of estimating these is probably not worth it. If the sample size
is large (e.g., at least 200 examinees for moderate tests as a guiding principle) and
one has complex item formats, then latent trait models such as SEM may be useful
to estimate reliability and related quantities. It is important to always be aware of the
model assumptions that are lurking in the background when choosing a particular
scoring model (Zumbo, 1994), however, and for larger sample sizes and high-stakes
assessment scenarios, these should be investigated to obtain the most accurate
estimate of reliability and measurement error. We recommend Gessaroli and Folske's
(2002) approach.
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4.3.3. Hypothesis Tests for Reliability
Coefficients

The intra-class correlation coefficient, which can be used for test-retest, parallel forms,
subtest, and inter-rater reliability, has found wide applications in social and behavioral
research (Alsawalmeh & Feldt, 1992). Its distribution theory and the distribution
theory for Cronbach's # have recently been developed in more detail (Feldt, 1990;
van Zyl, Neudecker, & Nel, 2000). Hence, approximate tests have been developed
for two independent intra-class reliability coefficients (Alsawalmeh & Feldt, 1992), two
independent coefficient #s (Alsawalmeh & Feldt, 1999; Charter & Feldt, 1996), and two
dependent coefficient #s (Alsawalmeh & Feldt, 2000). Similarly, tests for disattenuated
correlation coefficients can be easily formulated in an SEM framework (Hancock, 1997).

Note, however, that not all distributional results are easily applicable across a wide
range of situations. For example, the asymptotic distribution of the maximum likelihood
(ML) estimator of # derived by van Zyl et al. (2000) requires no assumptions about the
covariance structures of the items; yet, as an asymptotic result, it requires large sample
sizes. Furthermore, the multivariate normal distribution of the item response data is
unlikely to hold for dichotomously scored items.

Because the meaningful interpretation of hypothesis test results depends on the power
of the test, it is essential to understand that the power of a test is not a function of
the reliability coefficient but a relation of it (Williams, Zimmerman, & Zumbo, 1995;
Zimmerman, Williams, & Zumbo, 1993a, 1993b). As these authors remind us, power is
a function of the absolute value of observed variance, and its relative decomposition is
irrelevant, even though it influences the magnitude of the reliability coefficient. However,
formulas for computing the power and required sample size of a test for comparing
coefficient #s for two populations can indeed depend on the direct magnitude of the
respective sample values for the coefficient #s due to the sampling theory involved
(Feldt & Anken-mann, 1998). In summary, the class of statisticaltests for population
reliability coefficients has been broadened, and even though the individual papers need
to be referred to for the exact ways of conducting the tests, these tests are often not
difficult.
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4.3.4. Maximizing Reliability Coefficients
and Composite Scores

It has long been acknowledged that Cronbach's # is not an indicator of test homogeneity
or unidi-mensionality (e.g., Green, Lissitz, & Mulaik, 1977; Miller, 1995), and violations
of the assumption of test homogeneity have been researched (e.g., Feldt & Qualls,
1996). If tests are measuring several related constructs, modelers in CTT deal with this
by constructing composite test scores that receive appropriate weights using a table
of specifications. Using a composite-score analysis instead of a total-score analysis
may have a strong effect on the reliability estimate for the data, though. Formulas
exist, most commonly for congeneric tests, which maximize reliability measures under
different conditions (e.g., Armstrong, Jones, & Wang, 1998, for coefficient #; Goldstein
& Marcoulides, 1991, and Sanders, Theunissen, & Baas, 1989, for generalizability
coefficients; Knott & Bartholomew, 1993, for a normal factor model; Li, 1997, for a
composite score; Li, Rosenthal, & Rubin, 1996, for cost considerations; Rozeboom,
1989, for using regression weights on a criterion variable; Segall, 1996, for linearly
equated tests; Wang, 1998, for congeneric models).

Maximizing reliability is akin to determining the ideal sample size for a designed
experiment under power considerations, and so, just as in traditional statistical design,
practical consideration will eventually be the ultimate determining factor for test
construction or the analysis method as some tests proposed to maximize reliability
seem to have unrealistic characteristics (e.g., 700 multiple-choice items; see Li et al.,
1996). In addition, most formulas for composite reliability coefficients require knowledge
of the componential reliability coefficients. If reliability information is not available on the
subcomponents that are supposed to be weighted, a multivariate covariance structure
analysis approach may be called for, and formulas for weights that maximize reliability
have been derived for some cases (Wang, 1998).

Coefficient # and intra-class correlation coefficients are not the only means of indexing
measurement precision. In fact, they are only single numbers that capture the quality of
the scores in a rather superficial sense. To obtain more precise information about how
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measurement error actually affects the scores and hence decisions about examinees,
we need to turn to score-level measures of precision.

4.3.5. Local Estimates of Precision in
Scores

Scoring test data eventually brings about consequences for examinees. These
consequences are mathematically dependent on accurately estimating the error
associated with examinees' scores, which is most crucial for examinees with an
observed score somewhere around the cut-score in criterion-referenced assessment
or along the entire conntinuum for norm-referenced assessment. It has long been
recognized that the score error is not constant along the continuum, even though in
early work in CTT, unconditional raw-score SEM was reported and used. However,
responsible data analysts and decision makers are aware that score error varies along
the ability continuum, and more evidence from different estimation methods has been
accumulated in the past decade to support this. Generally speaking, for observed-score
models, curves depicting the conditional SEM will be somewhat inverse U-shaped,
with smaller standard errors near the upper and lower tails of the true-score continuum
and larger standard errors in the center of the true-score continuum. In contrast, the
local precision curve for a test analyzed via IRT methods has the opposite, regular U
shape. That is, there is less error in the center of the latent continuum near the point of
maximum test information and more error for extreme values on the latent continuum.
Thus, local measures of precision need to be considered in observed and latent
variable models. Moreover, it is clear that a conditional raw-score standard error of
measurement (CRS-SEM) should be used for fair decision making based on raw scores
and that a conditional scale-score standard error of measurement (CSS-SEM) should
be reported if raw scores are transformed via linear or nonlinear transformations to
some other practically meaningful scale such as the percentiles, grade point equivalent,
or stanine scales.

Although in the 1989 chapter by Feldt and Brennan, CRS-SEM only received a two-
page treatment nested within a section on “special” issues in reliability and CSS-SEM
was not discussed in much detail, during the past decade, researchers in the field of
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measurement have produced a series of papers that meticulously investigated different
approaches to estimating local or conditional standard errors for scoring models on
different scales and the behavior of these approaches in different calibration situations
(e.g., Brennan, 1998b; Brennan & Lee, 1999; Feldt, 1996; Feldt & Qualls, 1996, 1998;
Kolen, Hanson, & Brennan, 1992; Kolen, Zeng, & Hanson, 1996; Lee, 2000; Qualls-
Payne, 1992; see also May & Nicewander, 1994). In general, most methods produce
similar results that lead only to slight differences in confidence interval width if the
conditional standard errors are used for their construction. As usual, CTT methods are
comparatively easier to compute and do not rely as heavily on larger sample sizes for
stable parameter estimation.

From earlier discussions, it should be clear that the explicit treatment of specific error
structures in scoring models has been one of the most important contributions in the
past decade. Within an observed-score context of conditional standard error, this has
most notably resulted in a synthesis of conditional standard error estimation approaches
for g-theory designs and estimations that include CTT scenarios as special cases
(Brennan, 1998b). Within a latent trait framework, the dependency of responses for
items presented with the same stimulus in testlets has driven researchers to develop
a Bayesian estimation framework for dichotomous and polytomous items on the same
test scored with IRT models (Bradlow et al., 1999; Wainer, Bradlow, & Du, 2000; Wainer
& Thissen, 1996; Wainer & Wang, 2001; Wang et al., 2002; see also Sireci, Thissen,
& Wainer, 1991, for reliability estimation as well as Lee & Frisbie, 1999, for a g-theory
approach). These studies have found that incorporating testlet effects into an IRT model
or g-theory model always improved estimation accuracy by incorporating within-testlet
response pattern information into parameter estimates and is necessary if strong testlet
effects are present to prevent biased ability estimates and thus incorrect decisions. This
conclusion was further supported in a direct comparison of CRS-SEM estimates with
models that accounted for testlet effects producing more accurate CRS-SEM under all
conditions, even though g-theory estimation, as an alternative to IRT testlet models,
worked well under mild testlet dependencies (Lee, 2000; see also Lee & Frisbie, 1999).
Again, the message is that for larger sample sizes, it is particularly important to assess
whether model assumptions are likely to hold, but for both smaller and larger sample
sizes, conditional standard errors should be computed and used for decision making.
It appears that the particular method for computing CRS-SEM or CSS-SEM does not

http://www.sagepub.com
http://srmo.sagepub.com


SRMO Beta Tester

Copyright ©2010 Sage Publications, Inc.

Page 22 of 33 The SAGE Handbook of Quantitative Methodology
for the Social Sciences: Responsible Modeling of

Measurement Data for Appropriate Inferences:
Important Advances in Reliability and Validity Theory

Sage Research Methods Online

matter much for most practical decisions and that the one that is simplest to implement
should be chosen.

4.3.6. Relationships Between Error
Estimates in Different Scoring Frameworks

We want to close the discussions about reliability and measurement error with a section
on relationships between observed-score and IRT models as some concepts are often
confused. As we have just seen, the notion of a local measure of precision, which is
captured by the information function in IRT, also exists in CTT through conditional
standard errors for raw and scale scores. Moreover, it is similarly possible to compute
information functions in CTT (Feldt & Brennan, 1989; Mellenbergh, 1996) as well
as unconditional standard errors and reliability coefficients in IRT (e.g., Samejima,
1994). In particular, the IRT equivalent to the unconditional standard error in CTT is the
expectation of the asymptotic conditional standard error:

For practical estimation purposes, the information function in the above equation is
replaced by the estimated test information function, and the ability distribution can be
empirically estimated if conditional unbiasedness of # holds; otherwise, test information
functions adjusted for bias should be used (Samejima, 1994). The reliability coefficient
can now be predicted from a single administration of a test using the observed variation
in # 9 and the estimated standard error as described above (in the formula, SEM
indicates standard error):
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The relationship between the multiple-occasion estimators of the reliability coefficient
in CTT and IRT models has been investigated for some time, and some authors even
go so far as to declare the reliability coefficient redundant (Samejima, 1994, p. 243).
This statement seems a bit extreme because the appropriateness of an IRT estimate of
reliability depends on the accuracy of the fitted model (see Meijer, Sijtsma, & Molenaar,
1995, p. 334, for this argument in a nonparametric context), and fitting a more complex
IRT model may require more data than are available at a given moment. In addition,
even though in IRT, standard errors are larger at the extreme ends of the scale (Lord,
1980), this is dependent on the choice of transformation from the true score to the
latent trait scale, and dramatic differences between conditional standard errors can be
observed for different choices of transformation (see Brennan, 1998b).

As another similarity between CTT and IRT models, recall that the reliability coefficient
in CTT is the ratio of true-score variance to total observed variance or the ratio of signal
to signal plus noise. Put differently, the signal-to-noise ratio equals the correlation
coefficient divided by 1 minus the correlation coefficient. Therefore, a local reliability
coefficient can be defined as a function of the item information function, which is itself
proportional to the local signal-to-noise ratio (Nicewander, 1993).

Conditional standard errors for absolute decisions (and thus dependability coefficients)
or relative decisions (and thus generalizability coefficients) can also be formulated in g-
theory (Brennan, 1998b, 2001). In g-theory, the class of model specifications, albeit all
generalized linear models (GLIMs), has been enlarged, but typically larger sample sizes
are required for accurate estimation of variance components. In IRT, the class of GLIMs
uses different link functions, but choices have to be made now between logit and probit
models, the number of parameters in the model, and whether to choose a parametric or
nonparametric formulation. In the latter case, reliability estimation is not even common
practice, and even though a reliability coefficient that is related to a scalability coefficient
can be estimated in Mokken's nonparametric alternatives to the Rasch model, their
complementary uses remain unclear (Meijer et al., 1995; Meijer, Sijtsma, & Smid, 1990).

Finally, it needs to be highlighted that one of the advantages of reliability estimation in
CTT is the relative simplicity of the model, whose only major alternatives consisted of
different assumptions about its unobserved components. Claims that CTT is merely
a special case of IRT (Nicewander, 1993) or FA seem to be overstatements and
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seem to ignore the difference between score-level and item-level modeling, as well as
between a latent variable and a more general unobserved variable such as the true
score in CTT. To the contrary to the overstatement, it can be argued that IRT is a first-
order approximation to CTT. The overstatement also ignores the role that parameter
estimation strategy has in defining a psychometric model. Put simply, the liberalization
of CTT into g-theory—along with its reformulation and extension, in latent variable
terms, in FA and SEM—and the advent of IRT have come at the price of stronger
requirements on the data, which have affected reliability estimation. For larger sample
sizes, we can definitely investigate more complex assessment scenarios through g-
theory, as well as more complex dependency structures through FA and SEM, and
achieve invariance properties for adaptive testing in IRT (see Rupp, 2003; Rupp &
Zumbo, 2003, in press, on quantifying a lack of invariance in IRT models), but for
smaller sample sizes, these advances are often of limited benefit to the practitioner. In
addition, no matter how sophisticated the model statement and estimation routines have
become, a test of poor validity and thus poor conceptual reliability will always remain
unaltered. This brings us to our final section.

4.4. Validity and the Practice of Ralidation

Validity theory aids us in the inference from the true score or latent variable score to the
construct of interest. In fact, one of the current themes in validity theory is that construct
validity is the totality of validity theory and that its discussion is comprehensive,
integrative, and evidence based. In this sense, construct validity refers to the degree to
which inferences can be made legitimately from the observed scores to the theoretical
constructs about which these observations are supposed to contain information. In
short, construct validity involves generalizing from our behavioral or social observations
to the concept of our behavioral or social observations. The practice of validation aims
to ascertain the extent to which an interpretation of a test is conceptually and empirically
warranted and should be aimed at making explicit hidden ethical and social values that
influence that process (Messick, 1995).

It is hard not to address validity issues when one is discussing errors of measurement.
Yet the developments in validity theory have not been as dramatic over the past 15
years as have been the developments in reliability estimation and measurement model
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development. For a cursory overview, several papers are available that describe
important current developments in validity theory (Hubley & Zumbo, 1996; Johnson &
Plake, 1998; Kane, 2001). In brief, the recent history of validity theory is perhaps best
captured by the following observations.

• As one can see in Zumbo's (1998) volume, there is a move to consider
the consequences of inferences from test scores. That is, along with the
elevation of construct validity to an overall validity framework for evaluating
test interpretation and use came the consideration of the role of ethical and
social consequences as validity evidence contributing to score meaning.
This movement has been met with some resistance. In the end, Messick
(1998) made the point most succinctly when he stated that one should not be
simply concernedwith the obvious and gross negative consequences of score
interpretation, but rather one should consider the more subtle and systemic
consequences of “normal” test use. The matter and role of consequences still
remains controversial today and will regain momentum in the current climate
of large-scale test results affecting educational financing and staffing in the
United States and Canada.

• Although it was initially set aside in the move to elevate construct validity,
criterion-based evidence is gaining momentum again in part due to the work
of Sireci (1998).

• Of all the threats to valid inferences from testscores, test translation is
growing in awareness dueto the number of international efforts in testing and
measurement (see Hambleton & Patsula, 1998).

• The use of cognitive models as an alternative to traditional test validation
is gaining a great deal of momentum. One of the limitations of traditional
quantitative test validation practices (e.g., factor-analytic methods, validity
coefficients, and multitrait multi-method approaches) is that they are
descriptive ratherthan explanatory. In other words, they are statistical and not
psychological. Models for cognitively diagnostic assessment, particularly the
work of Susan Embretson and Kikumi Tatsuoka, has expanded theevidential
basis for test validation as well as the nomo-thetic span of the nomological
network. The basicidea is that if one could understand why an individual
responded a certain way to an item, then that would goa long way toward
bridging the inferential gap betweentest scores and constructs.

http://www.sagepub.com
http://srmo.sagepub.com


SRMO Beta Tester

Copyright ©2010 Sage Publications, Inc.

Page 26 of 33 The SAGE Handbook of Quantitative Methodology
for the Social Sciences: Responsible Modeling of

Measurement Data for Appropriate Inferences:
Important Advances in Reliability and Validity Theory

Sage Research Methods Online

Given that cognitive models present one of the most exciting new developments with
implications for validity theory, the next section discusses them in more detail.

4.4.1. Cognitive Models for a Stronger
Evidentiary Bases of Test Validation

It is informative to start this discussion by addressing the use of the term cognitive
psychology in the literature on cognitive models. For many assessment situations,
researchers use the word cognition to loosely refer to any process that is somehow
grounded in our minds and therefore eventually our brains. Yet there is little doubt that
measurement specialists are not interested in the biological or neuroscientific bases
of cognitive processes for typical cognitively diagnostic assessments, so that we really
often mean a “soft” form of cognitive psychology in a measurement context.

Some will undoubtedly argue that it is not the job of a psychometric data modeler to
worry about what is done with the numerical estimates once they are handed down,
but it is exactly this neglect of meaningful inferences at the expense of sophisticated
estimation techniques that has often eradicated the psychology in “psycho”-metrics. The
realization that it is time to put psychology back into the equation so that investigators
who desire “reliable” tests are assured by modelers that their data do indeed provide
evidence for dependable meaningful inferences. To appreciate the relevance and
importance of cognitive models, one has to understand that we have not made many
significant advances toward explicit validation of the inferences drawn from test scores
through mathematical models. This holds true despite the injection of a latent continuum
that allows modelers to extract information from test data more flexibly and accurately at
the item level in IRT. For example, Junker (1999) suggests that

despite the persistence of the “latent trait” terminology in their work, few
psychometricians today believe that the latent continuous proficiency
variable in an IRT model has any deep reality as a “trait”; but as a
vehicle for effectively summarizing, ranking, and selecting based on
performance in a domain, latent proficiency can be quite useful. (p. 10)
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The main goal of modeling test data should always be to make valid inferences about
the examinees, but the validity of these inferences cannot be mechanically increased by
inducing latent constructs into the data structure.

Cognitive models seek to explicitly represent the cognitive processes that examinees
engage in when responding to items through parameters in mathematical models,
which typically consist of augmented IRT models, classification algorithms based
on regular IRT models, or Bayesian inference networks that have IRT models as a
central component. One approach to cognitively diagnostic assessment is the rule-
space methodology that attempts to classify examinees into distinct attribute states
based on observed item response data, an appropriate IRT model, and the attribute
specification for the items (Tatsuoka, 1983, 1991, 1995, 1996; Tatsuoka & Tatsuoka,
1987). Despite a lack of consensus in the literature about what is meant exactly by an
attribute and the sensitivity of the classification to the appropriateness of the chosen
IRT model, this approach forces test developers to specify prerequisite cognitive
characteristics of examinees—ideally before designing a test (Gierl, Leighton, & Hunka,
2000). Other approaches based on item attribute incidence or Q-matrices have been
developed (e.g., DiBello, Stout, & Roussos, 1995), but their main weakness to date
remains the vagueness and lack of guidance in attribute specification (e.g., Junker &
Sijtsma, 2001). Developments in cognitive models have often taken place primarily in
educational achievement and psychoeducational assessment contexts, though. An
exception was Zumbo, Pope, Watson, and Hubley (1997) in personality assessment,
in which they studied the relation of the abstractness and concreteness of items to the
psychometric properties of a personality measure. Other advances are currently made
in the development of simulation-based assessment software that emphasizes a deeper
and richer understanding of the cognitive processes required for performing certain
tasks in which data are analyzed through Bayesian networks (Mislevy, Steinberg,
Breyer, Almond, & Johnson, 1999).

More sophisticated models for cognitive assessment do not come without a price.
One of the components of this price is again sample size because more complex IRT
models, cognitive state models, or Bayesian inference networks typically require a
larger number of parameters to be estimated. More important, however, the more useful
models for cognitively diagnostic assessment are built on a solid understanding of the
cognitive processes underlying the tasks that are being assessed. As an excellent
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example, consider the work by Embretson (1998), who used the cognitive process
analysis of the Raven's Advanced Progressive Matrix test by Carpenter, Just, and
Shell (1990) to model examinees' responses, extract diagnostic information, and
generate similar items. Comprehensive models of cognitive abilities are still relatively
rare, and even though advances have been made, it is necessary to note that their
most important cornerstone, the analysis of cognitive processes, is still their weakest
element.

The issue is less a lack of models for new kinds of test data but rather a lack of
awareness in the applied world that these models exist along with a mismatch of
assessment instruments and modeling practice. In other words, if test developers
are interested in providing examinees and institutions with richer profiles of abilities
and developmental progress, the nature of the assessment methods has to change
to provide richer data sets from which relevant information can be more meaningfully
extracted. What is meant by more meaningful will, of course, in the end depend on
the use of the assessment data, but in general, authorities in the field are nowadays
beginning to agree that we need more than simple test responses scored 0 and 1
to validate the inferences that are being made from the test data. As Embretson's
(1998) work demonstrates, the key to useful cognitive models is that they need to be
explanatory and not just another set of descriptive models in cognitive terms rather
than mathematical terms (Zumbo & MacMillan, 1999). Put differently, a change of
terminology is insufficient to claim true advances in gathering more meaningful and
weighty validity evidence.

A similar push for explanatory power has also taken place in the area of differential
item functioning, where attitudinal, background, and cognitive variables are used to
account for differential achievement profiles to investigate the inferential comparability
of scores across populations (Klieme & Baumert, 2001; Watermann & Klieme, 2002).
The developments that are currently taking place serve in part as a consciousness-
raising device to help test developers and users to reflect more closely on how valid
their inferences from test data really are and how these inferences can be improved.
This continues the path toward a comprehensive and unified validation process of
assessment instruments that has been eloquently laid out by Messick (1989, 1995).
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4.4.2. Implications of Cognitive Models for
Modeling Novel Dependency Structures

In traditional psychometric models, dependencies among item responses over
and above what can be accounted for by the unobserved variables have been a
dreaded feature of test data, and every effort has always been made to eliminate
this dependency through test design or modeling efforts. This may be the wrong lens
that is applied to the data, and it appears that cognitively diagnostic assessments—
along with models for testlet structures and more complicated error dependencies—
are the new figures that are slowly taking shape under a new perspective on items
and responding to items. We have begun to shift our thinking back to the individual
examinees because we are starting to realize that the goal of any assessment, be it
strictly cognitively diagnostic or not, is to arrive at better inferences about examinees'
abilities. Furthermore, item difficulty and discrimination are properties of the examinees
that respond to the items because the items are windows into the minds of the
examinees and are not qualities inherent in items independent of populations of
examinees.

All of this is to say that the current push toward cognitively diagnostic assessment
seems to be more than just an extension of currently existing models and statistical
methodologies to richer domains. In fact, it is our chance to clean our windows into
the minds of examinees and to refocus our lenses toward the examinees as the unit of
investigation that matters most. From a mathematical perspective, this means looking
for different types of information in data structures that may posit new challenges to the
modelers. In particular, if cognitive processes are highly interrelated in complex neural
networks at a biological-chemical level, then we can expect that item responses are
probably also interrelated to a much higher degree than gives us comfort. Indeed, what
we need is an extension of the models that are currently used in covariance structure
analysis because the future seems to lie in accepting covariation and interrelationships
rather than dreading them.

This can be seen not only in the models and scenarios discussed so far but also by
looking at the variety of item types that can be found in new tests across multiple
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disciplines (Zenisky & Sireci, 2002). As these authors show, traditional test formats
have been augmented with a whole new battery of items that require the test taker to
engage in more sophisticated complex cognitive processes. We certainly have choices
when scoring these item types as we really also have when dealing with the items that
are used in cognitively diagnostic assessments. We could theoretically score them
all 0–1 or on a simple graded scale and apply traditional models in CTT, g-theory, or
IRT to the responses. We might find, however, that dependency structures in the data
sets might compromise our simple analyses because the items are not isolated items
anymore. Indeed, to use such items more successfully, it would make much more sense
to focus on the interdependencies and go from there.

It should also be noted that the nature of dependencies that are deliberately build
into more complex item types has crept up with traditional tests as well. For example,
researchers have been busy investigating the data structure for CTT models in
terms of the degree of test parallelism. As one dimension of complexity, researchers
have defined parallel, essentially parallel, #-equivalent, essentially #-equivalent, and
congeneric tests; as a second dimension, they consider uncorrelated and correlated
errors; and as a third, they investigate sampling type (i.e., Type 1, Type 2, Type 12).
With all these considerations at hand, psychometricians have been busy trying to find
the best estimators of quantities such as the reliability coefficient or conditional standard
errors for different data structures. Nevertheless, we are faced these days with data
structures that do not adhere to any of the criteria above (e.g., spherical covariance
matrices; see Barchard & Hakstian, 1997; Hakstian & Barchard, 2000), which compel us
to search for better descriptions of the data structure at hand.

4.5. Conclusion

The emphasis in this chapter has been on measurement error, reliability, and validity
through the lens of scoring data from tests within a particular scoring framework. We
have highlighted on several occasions the distinctions between observed variable
frameworks (i.e., CTT and g-theory) and latent variable frameworks (i.e., EFA, CFA,
SEM, and IRT). We believe it is important to understand that the use of a particular
scoring model always remains the choice of the data analyst and is not necessitated by
the data. More often than not, the choice of a particular scoring model is the result of
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personal beliefs, training, and working conventions (Rupp & Zumbo, 2003). Yet it has
severe consequences for how we define, quantify, and use measurement error and the
decisions that we base thereon. Choosing a scoring model is an empirical commitment
that demands the data analyst take responsibility for the consequences imparted on the
examinees by this choice.

To underscore this responsibility one last time, consider for a moment a few issues
that can arise with some popular scoring models. When working within a latent variable
framework, it is certainly irresponsible to blindly fit IRT models to any kind of data—even
if the models formally match the type of scores given (e.g., dichotomous, polytomous)
—without ensuring that sufficiently large and representative calibration samples are
available so that stable and representative parameter estimates can be obtained. If the
parameters are not well estimated, decisions will be biased. In addition, if the intention
is to use a one-shot calibration at one point in time with one set of examinees, it is
logically inconsistent to justify the use of an IRT model because model parameters
possess the feature of invariance. Invariance refers to the identity of item and examinee
parameters from repeated calibration for perfect model fit and is not needed in this
case. Hence, it should not be cited as the primary reason for using such a model.

Another example comes from the area of cognitively diagnostic assessment. Without
any detailed data collected on examinees and any detailed attempts to develop realistic
processing models, truly cognitively diagnostic assessment is not possible. In addition,
an augmented IRT model for cognitive assessment needs to be judiciously chosen
based on the cognitive theory underlying the test response processes and not simply
because it is an interesting extension of basic IRT models (for excellent examples, see
Embretson, 1998; Maris, 1995).

In the area of observed-score modeling, it is equally irresponsible to use the
unconditional raw-score standard error when a large body of evidence has shown for
years that CRS-SEM varies along the score continuum. Similarly, CSS-SEM needs to
be computed separately if scores are transformed to scales such as stanine, percentile,
or grade-equivalent scales as it also varies and is generally not equal to the CRS-
SEM. Using inappropriate measures of error can lead to incorrect and unfair decisions
for some, if not most, students. On a more subtle level, most observed-score scoring
methods rely on assumptions about the score matrix such as parallelism, essential
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# equivalence, or congenerity. In some cases, failing to adjust reliability coefficients
or other measures of error to the right model can lead to biased statements about a
test, overconfidence in test use, and unfair decisions about examinees. Moreover,
factor-analytic procedures and software can nowadays easily be used to test for these
assumptions and to produce appropriate error estimates for larger sample sizes.

It is the responsibility of mathematically trained psychometricians to inform those who
are less versed in the theory about the consequences of their decisions to ensure that
examinees are assessed fairly. Because models (which, in part, include the parameter
estimation strategy) are empirical commitments, it is measurement specialists who
need to take partial responsibility for the decisions that are being made with the models
they provide to others. Everyone knows that a useful and essential tool such as an
automobile, a chainsaw, or a statistical model can be very dangerous if put into the
hands of people who do not have sufficient training and handling experience or lack the
willingness to be responsible users.

All of this is not to say that decision-making disasters will immediately occur if the above
things are not adhered to in the fullest. However, it can also be too tempting to take
that exact fact to be less stringent and less careful about our practices, and we believe
it is important that we all in the psychometric community work together to ensure fair
and sound decision making. Technological advances have opened up doors for us to
do more sophisticated and complex simulation work, analyze richer and more nested
data structures than ever before, and synthesize findings across analyses. At the same
time, it is important to remember that examinees are typically not interested in the
particular scoring models used for obtaining their score but rather in a fair assessment,
which simply translates to fair decisions based on their responses. The term fair is of
course heavily value laden and can take on different shades of meaning for different
examinees, but nevertheless responsible data models consider the consequences of
test score interpretation for which they provide the numerical ingredients.

Numerous questions about the reliability of tests have been asked in the past decade,
and important advances have been made in the area of estimating conditional standard
error for nonlinear scale transformations, estimating bias of reliability coefficient
estimates such as coefficient # under simultaneous violations of assumptions, deriving
algorithms for maximizing #, deriving tests for #s from different populations, and
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establishing relationships between CTT, g-theory, IRT, and SEM that show the inter-
relatedness of these procedures. In other words, we have been able to make convincing
arguments for the unification of measurement models (see McDonald, 1999; Rupp,
2002; Zimmerman & Zumbo, 2001), and we have made convincing arguments for
advantages of g-theory over CTT, IRT over g-theory, IRT over CTT, and SEM over g-
theory, CTT, and IRT and so on. Important research in this area still needs to happen,
and a wealth of unanswered research questions can be found in the concluding
sections of the more than 100 articles that we could find in journals over the past 10
years.

We believe that this is fruitful work but that it is at least as important to reflect on
our testing practice in the new millennium. Cognitively diagnostic assessments
will play an important part, but we believe that they will neither replace traditional
assessments entirely in the near future nor answer all of the problems encountered
by psychometricians at the moment. But they are the psychometric discipline's way of
pointing out that data modelers are ready to face new challenges posed by the need
for richer information about examinees, concurrent new item types, redefinitions of
the construct of an item itself, and a higher degree of inter-relatedness of responses
from a mathematical as well as from a soft cognition perspective. Reliability and validity
will always be important in test development. Reliability indices are not irrelevant, as
some proclaim, because they serve different purposes than conditional SEM and test
information functions, and validity will always be the cornerstone of test development
and use, particularly if we move to a more unified test development–data modeling–
test use process. Measurement specialists are beginning to talk and reach out to each
other more and more across disciplines and cultural boundaries. Content experts,
psychometric data analysts, and cognitive psychologists may not always be at the
same table yet, but at least they are more often pooling their expertise in the same
metaphorical room, and that is certainly a good thing. We are far from a practical
revolution in testing, but we seem to be at an exciting juncture for pausing and reflecting
on what to focus on.
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